Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Exp Gerontol ; : 112451, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729250

RESUMO

The NLRP3 inflammasome is critically involved in the development of depression. The E3 ubiquitin ligase TRIM31 negatively regulates this process by promoting the degradation of NLRP3 through the ubiquitin-proteasome pathway. Modified Danzhi Xiaoyaosan (MDZXYS) has shown good therapeutic effect in both preclinical and clinical depression treatments, yet the underlying mechanisms of its antidepressant effects are not fully understood. In the present study, we aimed to explore the antidepressant mechanisms of MDZXYS, focusing on NLRP3 activation and ubiquitin-mediated degradation. We employed rats with depression induced by chronic unpredictable mild stress (CUMS) and conducted various behavioral tests, including the sucrose preference, forced swimming, and open field tests. Neuronal damage in CUMS-treated rats was assessed using Nissl staining. We measured proinflammatory cytokine levels using ELISA kits and analyzed NLRP3/TRIM31 protein expression via Western blotting and immunofluorescence staining. Our results disclosed that MDZXYS reversed CUMS-induced depression-like behaviors in rats, reduced proinflammatory cytokine levels (IL-1ß), and ameliorated neuronal damage in the prefrontal cortex. Additionally, CUMS activated the NLRP3 inflammasome in the prefrontal cortex and upregulated the protein expression of TRIM31. After MDZXYS administration, the expression of NLRP3 inflammasome-associated proteins was reduced, while the expression level of TRIM31 was further increased. Through co-localized immunofluorescence staining, we observed a significant elevation in the co-localization expression of NLRP3 and TRIM31 in the prefrontal cortex of the MDZXYS group. These findings suggest that inhibiting NLRP3 inflammasome-mediated neuroinflammation by modulating the TRIM31signaling pathway may underlie the antidepressant effects of MDZXYS, and further support targeting NLRP3 as a novel approach for the prevention and treatment of depression.

2.
ChemSusChem ; : e202400515, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705848

RESUMO

The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm-2), enhanced charge separation efficiency (85%), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.

3.
Biomed Pharmacother ; 175: 116615, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663101

RESUMO

Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERß, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.

4.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569341

RESUMO

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Assuntos
Arsenicais , Compostos de Ferro , Ferro , Minerais , Sulfetos , Sulfetos/química , Ferro/química , Arsenicais/química , Cinética , Minerais/química , Compostos de Ferro/química , Oxirredução , Solubilidade , Arsênio/química , Biofilmes , Acidithiobacillus/metabolismo
5.
Plast Reconstr Surg ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563522

RESUMO

BACKGROUND: The correction of severe blepharoptosis is one of the most challenging surgeries in plastic surgery. This study introduces a novel self-reinforced fixation technique combining the levator complex with conjoint fascial sheath for the correction of severe blepharoptosis and reviews the postoperative results over the preceding 12 years. METHODS: This retrospective review included all patients who underwent self-reinforced fixation with or without conjoint fascial sheath at the authors' center between 2010 and 2022. The clinical data of the two groups were collected and evaluated. RESULTS: All patients were followed up for 6 months to 8 years postoperatively. The mean postoperative MRD1 and LF increased significantly in both groups. Sufficient correction of ptosis was achieved in 32 (65.31%) and 84 (81.56%) eyelids in Groups I and II, respectively. The mean eyelid lagophthalmos was 1.27± 0.91 mm and 0.85 ± 0.89 mm in Groups I and II, respectively. The most common complication was undercorrection of ptosis, which was observed in 14 eyelids (28.57%) and 15 eyelids (14.56%) in Groups I and II, respectively. CONCLUSIONS: The self-reinforced fixation technique was effective in correcting severe congenital ptosis in Chinese patients. The clinical effect was consistent in the long-term follow-up cases, and the recurrence rate was low. Thus, this technique can enhance the strength of the levator muscle and maintain appropriate elasticity of eye closure. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.

6.
Sci Total Environ ; 931: 172753, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679097

RESUMO

Approximately 10 % of global anthropogenic CO2 emissions arise from the cement and concrete industry driven by urban expansion and a constant need for infrastructure renewal. Reusing waste CO2 to make new construction materials produces circular carbon flows and constitutes a key step toward a carbon-negative economy. To establish a holistic view of the field, this paper examines upscaled technologies with industrial deployments for utilizing CO2 in manufacturing cement-based materials and analyzes their interplay for attaining net-zero emissions (NZE) in the concrete sector. By scrutinizing the status quo, it suggests that NZE agendas should be diversified catering to the wide-ranging built products. Small-sized precast elements and lightweight components lead the way in carbon-neutral manufacturing, while the market-dominating ready-mix concrete is by far difficult to decarbonize and relies on the incorporation of pre­carbonated ingredients, preferably sourced from alkaline wastes, to leverage large-scale CO2 utilization. To expedite the race to NZE, it is necessary to combine the development of CO2 utilization and low-CO2 cement to create decarbonization strategies tailoring for individual products. In this regard, the paper reveals credible pathways and research needs to facilitate their implementation in sustainable construction.

7.
Transl Oncol ; 45: 101936, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678970

RESUMO

The infiltration and prognostic significance of tumor-infiltrating plasmacytoid dendritic cells (TI-pDC) have been elucidated in various human solid cancers. However, the infiltrating patterns and functional importance of TI-pDC in laryngeal squamous cell carcinoma (LSCC) remain unknown. In this study, flow cytometric analyses were conducted to characterize the infiltration of dendritic cells and T lymphocytes, along with their respective subgroups in tumor tissues (TT), para-carcinoma tissues (PT), and peripheral blood (PB) from LSCC patients. Immunohistochemical staining for CD4 and CD8, as well as immunofluorescence staining for CD123, were performed on serial tissue sections to investigate the co-localization of TI-pDC and tumor-infiltrating T lymphocytes (TIL) within the tumor microenvironment (TME). Our results demonstrated significantly lower percentages of all three DC subsets in PB compared to TT and PT. Notably, the pDC percentage was markedly higher in TT than in PT. Moreover, TI-pDC percentage was significantly elevated in N+ stage patients compared to those with N0 stage. The results of survival analysis consistently demonstrated that high levels of TI-pDC infiltration were indicative of a poor prognosis. Further investigation revealed a significant negative correlation between TI-pDC and CD8+ TILs; notably, pDCs expressed an inhibitory surface molecule PD-L2 rather than PD-L1 within PT. Collectively, our findings suggest that increased TI-pDC is associated with adverse outcomes in LSCC patients while exhibiting an inhibitory phenotype that may play a crucial role in suppressing CD8+ TILs within LSCC tumors. These results highlight the potential therapeutic strategy targeting PD-L2+ pDCs for immunotherapies against LSCC.

8.
World J Clin Cases ; 12(7): 1251-1259, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38524506

RESUMO

BACKGROUND: Testicular torsion is the most common acute scrotum worldwide and mainly occurs in children and adolescents. Studies have demonstrated that the duration of symptoms and torsion grade lead to different outcomes in children diagnosed with testicular torsion. AIM: To predict the possibility of testicular salvage (TS) in patients with testicular torsion in a tertiary center. METHODS: We reviewed the charts of 75 pediatric patients with acute testicular torsion during a 12-year period from November 2011 to July 2023 at the Suzhou Hospital of Anhui Medical University. Univariate and multivariate logistic regression analyses were used to determine independent predictors of testicular torsion. The data included clinical findings, physical examinations, laboratory data, color Doppler ultrasound findings, operating results, age, presenting institution status, and follow-up results. RESULTS: Our study included 75 patients. TS was possible in 57.3% of all patients; testicular torsion occurred mostly in winter, and teenagers aged 11-15 years old accounted for 60%. Univariate logistic regression analyses revealed that younger age (P = 0.09), body mass index (P = 0.004), torsion angle (P = 0.013), red blood cell count (P = 0.03), neutrophil-to-lymphocyte ratio (P = 0.009), and initial presenting institution (P < 0.001) were associated with orchiectomy. In multivariate analysis, only the initial presenting institution predicted TS (P < 0.05). CONCLUSION: The initial presenting institution has a predictive value for predicting TS in patients with testicular torsion. Children with scrotal pain should be admitted to a tertiary hospital as soon as possible.

9.
Curr Microbiol ; 81(4): 107, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427056

RESUMO

Rhizospheric microbial community of emergent macrophytes plays an important role in nitrogen removal, especially in the eutrophic wetlands. The objective of this study was to identify the differences in anammox bacterial community composition among different emergent macrophytes and investigate revealed the the main factors affecting on the composition, diversity, and abundance of anammox bacterial community. Results showed that the composition, diversity, and abundance of the anammox community were significantly different between the vegetated sediments of three emergent macrophytes and unvegetated sediment. The composition of the anammox bacterial community was different in the vegetated sediments of different emergent macrophytes. Also, the abundance of nitrogen cycle-related functional genes in the vegetated sediments was found to be higher than that in the unvegetated sediment. Canonical correspondence analysis (CCA) and structural equation models analysis (SEM) showed that salinity and pH were the main environmental factors influencing the composition and diversity of the anammox bacterial community and NO2--N indirectly affected anammox bacterial community diversity by affecting TOC. nirK-type denitrifying bacteria abundance had significant effects on the bacterial community composition, diversity, and abundance of anammox bacteria. The community composition of anammox bacteria varies with emergent macrophyte species. The rhizosphere of emergent macrophytes provides a favorable environment and promotes the growth of nitrogen cycling-related microorganisms that likely accelerate nitrogen removal in eutrophic wetlands.


Assuntos
Rizosfera , Áreas Alagadas , Oxidação Anaeróbia da Amônia , Lagos/microbiologia , Bactérias/genética , Ciclo do Nitrogênio , Nitrogênio , Oxirredução , Sedimentos Geológicos/microbiologia
10.
Front Cell Dev Biol ; 12: 1338448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476263

RESUMO

Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.

11.
Biofabrication ; 16(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471164

RESUMO

Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.


Assuntos
Elastômeros , Mecanotransdução Celular , Humanos , Células HeLa , Adesão Celular/fisiologia , Divisão Celular
12.
Talanta ; 273: 125836, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458080

RESUMO

Herein, a highly novel and effective electrochemiluminescence (ECL) sensor based on metal-organic framework (MOF, HKUST-1) derived CuO nanoneedles (HKUST-1 derived CuO NNs), gold nanoparticles (AuNPs) and TiO2 was developed for ultrasensitive detection of catechol and luteolin. The HKUST-1 derived CuO NNs were employed as luminophore for the first time, which were successfully fabricated by using HKUST-1 as precursor. The results revealed that the HKUST-1 derived CuO NNs exhibit excellent ECL activity ascribed to its abundant active site and the high specific surface area, thus obviously promoting the separation and transfer of charge and further improving the current density of ECL sensor. To binary-amplify the signal of the ECL sensor, the AuNPs and TiO2 nano-materials with good biocompatibility, great electron transport efficiency and high catalytic activity were used as co-reaction accelerators in the ECL process. Dependent on the above brilliant strategy, the proposed ECL sensor achieved wide linear ranges from 3 × 10-9 - 1 × 10-4 M for catechol and 1 × 10-8 - 2 × 10-4 M for luteolin, with the detection limits of 1.5 × 10-9 M for catechol and 5.3 × 10-9 M for luteolin, respectively. Furthermore, the ECL sensor exhibited outstanding selectivity, repeatability, stability and obtained great feedback on determination of catechol and luteolin in actual samples. The method not only filled a gap in the ECL application of MOF-derived materials but also provided a novel sight for design other highly efficient luminescent materials.

13.
Exp Mol Med ; 56(4): 836-849, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556545

RESUMO

Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Animais , Exossomos/metabolismo , Portadores de Fármacos/química , Terapia Genética/métodos
14.
Sci Adv ; 10(9): eadj4678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416830

RESUMO

Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Células Endoteliais/patologia , Linhagem Celular Tumoral , Macrófagos , Terapia de Imunossupressão , Neoplasias Encefálicas/genética
15.
STAR Protoc ; 5(1): 102898, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367235

RESUMO

The efficacy of chimeric antigen receptor (CAR) T cell immunotherapy is limited by insufficient infiltration and activation of T cells due to the immunosuppressive tumor microenvironment. Preclinical studies with optimized mouse CAR T cells in immunocompetent mouse cancer models will help define the mechanisms underlying immunotherapy resistance. Here, we present a protocol for preparing mouse T cells and generating CAR T cells. We then detail procedures for testing their therapeutic efficacy and tracking them in a syngeneic mouse glioma model. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Assuntos
Glioma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Imunoterapia , Linfócitos T , Glioma/terapia , Modelos Animais de Doenças , Microambiente Tumoral
16.
Hum Cell ; 37(3): 714-728, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358636

RESUMO

Tumor-infiltrating neutrophils play a crucial role in the progression of head and neck squamous cell carcinoma (HNSCC). Here, we aimed to statistically quantify the plasticity of HNSCC-infiltrating N2/N1 neutrophils and examine its impacts on survival and immune infiltration landscape. A retrospective study of 80 patients who underwent curative surgical resection for HNSCC between 2014 and 2017 was conducted in this study. HNSCC-infiltrating neutrophil phenotypes were classified using immunofluorescence staining, and the N2/N1 neutrophil plasticity was evaluated via the ratio of N2/N1 neutrophils. We then assessed the correlations between N2/N1 neutrophil plasticity, clinicopathological characteristics, and immune infiltration landscape using rigorous statistical methods. Infiltration variations of N1 and N2 neutrophils were observed between the tumor nest (TN) and tumor stroma (TS), with TN exhibiting higher N2 neutrophil infiltration and lower N1 neutrophil infiltration. High ratios of N2/N1 neutrophils were correlated with advanced TNM stage, large tumor size and invasion of adjacent tissue. High infiltration of N2 neutrophils was associated with decreased overall and relapse-free survival, which were opposite for N1 neutrophils. The independent prognostic role of N2/N1 neutrophil plasticity, particularly within the TN region, was confirmed by multivariate analyses. Moreover, the ratio of N2/N1 neutrophils within the TN region showed correlations with high CD8+ T cells infiltration and low FOXP3+ Tregs infiltration. We identify HNSCC-infiltrating N2/N1 neutrophil plasticity as a crucial prognostic indictor which potentially reflects the tumor microenvironment (TME) and immune escape landscape within HNSCC tissues. Further investigations and validations may provide novel therapeutic strategies for personalized immunomodulation in HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Neutrófilos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos , Prognóstico , Estudos Retrospectivos , Microambiente Tumoral
17.
J Am Chem Soc ; 146(10): 6697-6705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419157

RESUMO

Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.

18.
Sci Rep ; 14(1): 4612, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409210

RESUMO

The violent goods vibration during curve negotiation is a huge threat to the vehicle running safety. Qualified load restraint assemblies that can significantly suppress the cargo vibration are necessary. This study proposes a novel method for evaluating the essential restraint strength, focusing on the relative motion between cargo and wagon. In the beginning, as a comparison, current methods are used to calculate the necessary stiffness of lashings, which are adopted to restrain the cargo vibration on the wagon. Based on the data of the field test, the accuracy of the established wagon-cargo coupled dynamics model is validated. The loaded wagon model negotiates the curve under different running and loading conditions. The simulation results and analysis demonstrate effective strategies for suppressing the vibration of the cargo and reveal the necessary lashing stiffness. The comparison among the results of different evaluation methods shows that the stability of the cargo can be improved by optimizing the lashing stiffness with the method of dynamics simulations. We hope this study will make a positive contribution to the safety of railway freight transportation.

19.
World Neurosurg ; 184: e530-e536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316177

RESUMO

OBJECTIVE: The objective of this study was to investigate the influence of blood pressure on the severity and functional recovery of patients with acute cervical spinal cord injury (SCI) without fracture and dislocation. METHODS: A retrospective case control study analyzed the data of 40 patients admitted to our orthopedics department (Beijing Tiantan Hospital, Capital Medical University) from January 2013 to February 2021. They were diagnosed as acute cervical SCI without fracture and dislocation. Gender, age, height, weight, history of hypertension, postinjury American Spinal Injury Association grade, postinjury modified Japanese Orthopaedic Association (mJOA) score, postoperative mJOA score, 1-year follow-up mJOA score, preoperative mean arterial pressure (MAP), intramedullary T2 hyperintensity, and hyponatremia were collected. The patients were divided into groups and subgroups based on their history of hypertension and preoperative MAP. The effects of history of hypertension and preoperative MAP on the incidence of T2 hyperintensity, hyponatremia, the improvement rate of the postoperative mJOA and 1-year follow-up mJOA scores were analyzed. RESULTS: Patients with history of hypertension had a lower incidence of intramedullary T2 hyperintensity than patients without history of hypertension (P < 0.05). Patients with history of hypertension and patients with a higher preoperative MAP had better neurological recovery at 1 year of follow-up (P < 0.05). CONCLUSIONS: Blood pressure has great influence on acute cervical SCI without fracture and dislocation. Maintaining a higher preoperative MAP is advantageous for better recovery after SCI. Attention should be paid to the dynamic management of blood pressure to avoid the adverse effects of hypotension after SCI.


Assuntos
Medula Cervical , Fraturas Ósseas , Hipertensão , Hiponatremia , Lesões do Pescoço , Traumatismos da Medula Espinal , Humanos , Estudos Retrospectivos , Pressão Sanguínea , Estudos de Casos e Controles , Medula Cervical/lesões , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/cirurgia , Traumatismos da Medula Espinal/diagnóstico , Hipertensão/epidemiologia , Vértebras Cervicais/cirurgia , Resultado do Tratamento
20.
Adv Healthc Mater ; : e2303511, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353398

RESUMO

Type 2 diabetes is rapidly emerging as a global public health problem. While blood glucose monitoring has been the primary method of managing diabetes for decades, the increasing global prevalence of the disease suggests that there might be a need to identify additional biomarkers for a more precise early diagnosis. Herein, a microneedle patch based wearable sensor is developed for the purpose of diabetic diagnosis. Utilizing methacrylic acid modified gelatin and polyvinyl alcohol in the fabrication of microneedles has improved their mechanical properties for skin penetration and increased swelling capacity for interstitial fluid extraction, thanks to the double crosslinking mechanism. The fabricated microneedles are further integrated with test paper functionalized with enzyme and dye molecules to detect multiple signature biomarkers of diabetes in vivo through a colorimetric reaction. Such a wearable microneedle patch  holds significant promise for the real-time monitoring of various biomarkers related to chronic diseases and aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA